A criterion for cofiniteness of modules
نویسندگان
چکیده
Let $A$ be a commutative noetherian ring, $\mathfrak{a}$ an ideal of $A$, and $m,n$ non-negative integers. $M$ $A$-module such that $\operatorname{Ext}^i\_A(A/\mathfrak{a},M)$ is finitely generated for all $i\leq m+n$. We define class $\mathcal{S}n(\mathfrak{a})$ modules we assume $H{\mathfrak{a}}^s(M)\in\mathcal{S}{n}(\mathfrak{a})$ $s\leq m$. show $H{\mathfrak{a}}^s(M)$ $\mathfrak{a}$-cofinite m$ if either $n=1$ or $n\geq 2$ $\operatorname{Ext}A^{i}(A/\mathfrak{a},H{\mathfrak{a}}^{t+s-i}(M))$ $1\leq t\leq n-1$, t-1$ If ring dimension $d$ $M\in\mathcal{S}\_n(\mathfrak{a})$ any $\leq d-1$, then prove $A$.
منابع مشابه
On Vanishing and Cofiniteness of Generalized Local Cohomology Modules
In this paper, some results on vanishing and non-vanishing of generalized local cohomology modules are presented and some relations between those modules and, Ext and ordinary local cohomology modules are studied. Also, several cofiniteness propositions for generalized local cohomology modules are established which, among other things, provide an alternative answer to a question in [Y2].
متن کاملA Criterion for Integral Dependence of Modules
Let R be a universally catenary locally equidimensional Noetherian ring. We give a multiplicity based criterion for an arbitrary finitely generated R-module to be integral over a submodule. Our proof is self-contained and implies the previously known numerical criteria for integral dependence of ideals and modules.
متن کاملA Local Flatness Criterion for Complete Modules
We prove various extensions of the Local Flatness Criterion over a Noetherian local ring R with residue field k. For instance, if Ω is a complete R-module of finite projective dimension, then Ω is flat if and only if Torn (Ω, k) = 0 for all n = 1, . . . , depth(R). In low dimensions, we have the following criteria. If R is onedimensional and reduced, then Ω is flat if and only if Tor1 (Ω, k) = ...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولIrreducibility criterion for tensor products of Yangian evaluation modules
The evaluation homomorphisms from the Yangian Y(gln) to the universal enveloping algebra U(gln) allow one to regard the irreducible finite-dimensional representations of gln as Yangian modules. We give necessary and sufficient conditions for irreducibility of tensor products of such evaluation modules. AMS subject classification (2000): 17B37.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti del Seminario Matematico della Università di Padova
سال: 2023
ISSN: ['0041-8994', '2240-2926', '0373-319X']
DOI: https://doi.org/10.4171/rsmup/128